Четыре важнейших научных достижения селекционера николая вавилова. Известнейшие ученые-селекционеры Какой ученый прославился как селекционер и генетики

  • 01.01.2024

Г. Д. Карпеченко. Работы с капустно-редечными гибридами: амфидиплоидный гибрид капусты и редьки, получивший название Raphanobrassica, оказался репродуктивно изолированным от своих родителей, способным размножаться только «в себе». Он представлял собой четкую модель впервые созданного человеком в эксперименте нового таксона — даже не видового, а родового ранга, занимался гибридизацией географически отдаленных разновидностей ячменя. Им впервые была показана возможность возникновения под влиянием колхицина клеток с удвоенным числом хромосом.


Шехурдин Алексей Павлович. На основе материала, полученного от скрещивания T. aestivum с T. durum была создана целая плеяда перспективных форм безостой твердой пшеницы - от Кандиканс 76/10 до Саратовской 34. Важным достижением ученого стал разработка им нового, оригинального метода селекции, получивший название сложной ступенчатой гибридизации.

Цицин Николай Васильевич - советский ботаник и селекционер, академик ВАСХНИЛ, директор Главного ботанического сада АН СССР. С самого начала Н.В.Цицина заинтересовала проблема создания более продуктивных сортов главной продовольственной культуры — пшеницы — на основе отдаленной гибридизации. Он скрестил пшеницу с пыреем и впервые получил пшенично-пырейный гибрид. Он широко вовлекал в скрещивание дикорастущие и культурные растения, прошедшие самостоятельные эволюционные пути, определившие их генетическую обособленность. Исследования, проводимые учёным в этом направлении, позволили создавать новые сорта растений. Учёному удалось создать разновидности озимой мягкой ветвистой пшеницы, то есть формы, которых раньше в природе вообще не было.

Лукьяненко Павел Пантелеймонович. В середине 50-х годов им был создан всемирно известный сорт озимой мягкой пшеницы Безостая 1, получивший самое широкое распространение. Он был районирован в 48 областях нашей страны, в странах Восточной Европы, в Турции, Иране, Афганистане. Площадь его посева в 1971 году достигла 13 млн.гектаров. Внедрение этого сорта в производство позволило увеличить урожаи зерна пшеницы в полтора-два раза повсеместно. Вместе с тем, он стал исключительно ценным источником для селекции, широко используемый и по настоящее время в селекционных программах многих стран мира. Сам же Павел Пантелеймонович был убежден, что Безостая 1 не предел и есть много возможностей ее превзойти. В чем оказался совершенно прав.

Нет в мире другого селекционера, который бы подарил человечеству столько прекрасных сортов пшеницы. Павлом Пантелеймоновичем Лукьяненко создано 43 сорта.

Пустовойт Василий Степанович – заведующий отделом селекции и семеноводства и лабораторией селекции подсолнечника Всесоюзного научно-исследовательского института масличных культур. Проводил опыты с подсолнечником, озимой пшеницей, рожью, просом, кукурузой и клещевиной. С 1924 года руководил селекционной станцией масличных культур в Краснодаре.

Работы М. Ф. Иванова. Большая заслуга по созданию новых пород домашних животных принадлежит выдающемуся селекционеру М. Ф. Иванову, который вывел высокопродуктивные породы свиней и овец. Работа проводилась в Аскании-Новой. Завезенные на Украину высокопродуктивные белые английские свиньи оказались неприспособленными к местным условиям. Напротив, местная беспородная свинья обладала хорошей приспособленностью к степным условиям юга Украины, хорошей плодовитостью, неприхотливостью, но относительно низким качеством мяса. Селекционер провел скрещивание хряка белой английской породы с местными свиньями. Гибридные самки первого поколения снова были скрещены с чистопородным хряком белой английской породы. Из потомков были отобраны производители с наиболее ценными признаками, хорошо приспособленные к местным условиям. От них первоначально получили несколько инбредных линий животных, в результате скрещивания между которыми вывели новую породу свиней —украинскую степную белую. Пользуясь тем же методом, М. Ф. Иванов вывел новую породу овец — асканийскую тонкорунную.

Начало организованной селекционной работы в России относится к концу XIX в. В 1877 г. в Петербурге и в 1881 гг. в Москве создаются станции по контролю за качеством семян. В 1884 г. основано Полтавское опытное поле, в 1886 г. – Немерчанская и Уладово-Люлинецкая опытные станции. В 1896 г. П.А. Костычев основал Шатиловскую (ныне Орловскую) сельскохозяйственную опытную станцию. В 1903 г. Д.Л. Рудзинский организовал селекционную станцию при Московском сельскохозяйственном институте (ныне Московская сельскохозяйственная академия им. К.А. Тимирязева). В 1909–1912 гг. создается целый ряд опытных станций с отделами селекции: Харьковская, Саратовская, Краснокутская, Одесская, Мироновская. В советский период создаются зональные селекционные учреждения (НИИ сельского хозяйства Северо-Востока, Юго-Востока, Сибири, Центральных районов Нечерноземной зоны, Центральных районов Черноземной зоны, Белоруссии, Украины, а также специализированные институты по озимой пшенице (Краснодар), сахарной свекле (Киев, Воронеж), по масличным культурам (Краснодар), по кукурузе (Днепропетровск), зернобобовым и крупяным культурам (Орел), по рису (Узбекистан). На территории Брянщины действуют центры по селекции картофеля, люпина, малины, земляники, плодовых культур.

Работы И. В. Мичурина

Неоценимый вклад в развитие селекции растений внес отечественный селекционер, выдающийся преобразователь природы Иван Владимирович Мичурин (1855–1935). Объектом селекции служили разнообразные плодово-ягодные культуры: семечковые, косточковые; всего И.В. Мичуриным было создано свыше 300 сортов культурных растений, часть которых эксплуатируется до сих пор. Основные принципы работ И.В. Мичурина: гибридизация, отбор и воздействие условий среды. И.В. Мичурину принадлежит крылатое выражение; «Мы не можем ждать милостей от природы, взять их у неё – наша задача».

И.В. Мичурин был не просто талантливым садоводом-любителем. Он внес неоценимый вклад в мировую науку. В частности, Иван Владимирович экспериментально обосновал эффект смены доминирования: в зависимости от почвенно-климатических условий, характера подвоя и привоя и других факторов генотип может проявиться в фенотипе, а может и не проявиться. И.В. Мичурин использовал в своих работах метод ментора, основанный на различных комбинациях прививок. Для получения гибридов И.В. Мичурин широко использовал эколого-географические скрещивания – если родители происходят из разных географических районов или из разных местообитаний, то гетерозис проявляется наиболее сильно. Это вызвано тем, что эти родители имеют наиболее сильно различающиеся генотипы, сформировавшиеся в ходе естественного отбора в разных условиях. И.В. Мичурин установил, что селекцию сорта нужно вести в тех условиях, в которых планируется его дальнейшая эксплуатация.

Достижения отечественных селекционеров

Невозможно перечислить всех выдающихся отечественных селекционеров.

Назовем имена и основные достижения только некоторых из них:

Лукьяненко П.П. – озимая пшеница Безостая-1; всего более 40 сортов;

Ремесло В.Н. – озимая пшеница Мироновская-808;

Лорх А.Г., Букасов С.М., Юзепчук С.В. – картофель;

Пустовойт В.С. – высокомасличные сорта подсолнечника;

Жданов Л.А. – подсолнечник, устойчивый к заразихе;

Хаджинов М.И., Галеев Г.С. – межлинейные гибриды кукурузы на основе ЦМС;

Цицин Н.В. – пшенично-пырейные гибриды;

Мазлумов А.Л. – сахарная свекла.

1. Г. Мендель
Этот немецкий учёный заложил основы современной генетики, установив в 1865 году принцип дискретности (прерывности) , наследовании признаков и свойств организмов. Также он доказал метод скрещивания (на примере гороха) и обосновал три закона, названных позже его именем.

2. Т. Х. Морган
В начале двадцатого века этот американский биолог обосновал хромосомную теорию наследственности, согласно которой наследственные признаки определяются хромосомами - органоидами ядра всех клеток организма. Ученый доказал, что гены расположены среди хромосом линейно и что гены одной хромосомы сцеплены между собой.

3. Ч. Дарвин
Этот учёный, основатель теории происхождения человека от обезьяны, провёл большое количество опытов по гибридизации, в ряде которых и была установлена теория о происхождении человека.

4. Т. Фэрчайлд
Впервые в 1717 году получил искусственные гибриды. Это были гибриды гвоздик, получившиеся в результате скрещивания двух различных родительских форм

5. И. И. Герасимов
В 1892 году русский ботаник Герасимов исследовал влияние температуры на клетки зеленой водоросли спирогиры и обнаружил удивительное явление - изменение числа ядер в клетке. После воздействия низкой температурой или снотворным, он наблюдал появление клеток без ядер, а также с двумя ядрами. Первые вскоре погибали, а клетки с двумя ядрами успешно делились. При подсчете хромосом оказалось, что их вдвое больше, чем в обычных клетках. Так было открыто наследственное изменение, связанное с мутацией генотипа, т. е. всего набора хромосом в клетке. Оно получило название полиплоидии, а организмы с увеличенным числом хромосом – полиплоидов.

5. М. Ф. Иванов
Выдающуюся роль в селекции животных сыграли достижения известного советского селекционера Иванова, разработавшего современные принципы отбора и скрещивания пород. Он сам широко вводил генетические принципы в практику племенного дела, сочетая их с подбором условий воспитания и кормления, благоприятных для развития породных свойств. На этой основе им были созданы такие выдающиеся породы животных, как белая украинская степная свинья и асканийский рамбулье.



6. Я. Вильмут
В последнее десятилетие активно изучается возможность искусственного массового клонирования уникальных животных, ценных для сельского хозяйства. Основной подход заключается в переносе ядра из диплоидной соматической клетки в яйцеклетку, из которой предварительно удалено собственное ядро. Яйцеклетку с подмененным ядром стимулируют к дроблению (часто электрошоком) и помещают животным для вынашивания. Таким путем в 1997 г. в Шотландии от ядра диплоидной клетки из молочной железы овцы-донора появилась овечка Долли. Она стала первым клоном, искусственно полученным у млекопитающих. Именно этот случай был достижением Вильмута и его сотрудников.

7. С. С. Четвериков
В двадцатых годах возникли и стали развиваться мутационная и популяционная генетики. Популяционная генетика это область генетики, которая изучает основные факторы эволюции - наследственность, изменчивость и отбор - в конкретных условиях внешней среды, популяции. Основателем этого направления и был советский ученый Четвериков.

8. Н. К. Кольцов
В 30-е годы генетик этот учёный предположил, что хромосомы - это гигантские молекулы, предвосхитив тем самым появление нового направления в науке – молекулярной генетики.

9. Н. И. Вавилов
Советский ученый Вавилов установил, что у родственных растений возникают сходные мутационные изменения, например у пшеницы в окраске колоса, остистости. Эта закономерность объясняется сходным составом генов в хромосомах родственных видов. Открытие Вавилова получило название закона гомологических рядов. На основании его можно предвидеть появление тех или иных изменений у культурных растений.

10. И. В. Мичурин
Занимался гибридизацией яблонь. Благодаря этому, он вывел новый сорт Антоновка шестиграммовая. А его гибриды яблок нередко называют "Мичуринскими яблоками"

Прогресс в развитии медицины и общества приводит к относительному возрастанию доли генетически обусловленной патологии в заболеваемости, смертности, социальной дизадаптации (инвалидизации).

Половина спонтанных абортов обусловлена генетическими причинами.

Не менее 30% перинатальной и неонатальной смертности обусловлено врождёнными пороками развития и наследственными болезнями с другими проявлениями. Анализ причин детской смертности в целом также показывает существенное значение генетических факторов.

Не менее 25% всех больничных коек занято пациентами, страдающими болезнями с наследственной предрасположенностью.

Как известно, значительная доля социальных расходов в развитых странах идёт на обеспечение инвалидов с детского возраста. Огромна роль генетических факторов в этиологии и патогенезе инвалидизирующих состояний в детском возрасте.

Доказана существенная роль наследственной предрасположенности в возникновении широко распространённых болезней (ишемическая болезнь сердца, эссенциальная гипертензия, язвенная болезнь желудка и двенадцатиперстной кишки, псориаз, бронхиальная астма и др.). Следовательно, для лечения и профилактики этой группы болезней, встречающихся в практике врачей всех специальностей, необходимо знать механизмы взаимодействия средовых и наследственных факторов в их возникновении и развитии.

Медицинская генетика помогает понять взаимодействие биологических и средовых факторов (включая специфические) в патологии человека.

Человек сталкивается с новыми факторами среды, ранее никогда не встречавшимися на протяжении всей его эволюции, испытывает большие нагрузки социального и экологического характера (избыток информации, стрессы, загрязнение атмосферы и др.). В то же время в развитых странах улучшается медицинское обслуживание, повышается уровень жизни, что меняет направленность и интенсивность отбора. Новая среда может повысить уровень мутационного процесса или изменить проявляемость генов. И то и другое приведёт к дополнительному появлению наследственной патологии.

Знание основ медицинской генетики позволяет врачу понимать механизмы индивидуального течения болезни и выбирать соответствующие методы лечения. На основе медико-генетических знаний приобретаются навыки диагностики наследственных болезней, а также появляется умение направлять пациентов и членов их семей на медико-генетическое консультирование для первичной и вторичной профилактики наследственной патологии.

Приобретение медико-генетических знаний способствует формированию чётких ориентиров в восприятии новых медико-биологических открытий, что для врачебной профессии необходимо в полной мере, поскольку прогресс науки быстро и глубоко изменяет клиническую практику.

Наследственные болезни длительное время не поддавались лечению, а единственным методом профилактики была рекомендация воздержаться от деторождения. Эти времена прошли.

Современная медицинская генетика вооружила клиницистов методами ранней, досимптомной (доклинической) и даже пренатальной диагностики наследственных болезней. Интенсивно развиваются и в некоторых центрах уже применяются методы преимплантационной (до имплантации зародыша) диагностики.

Понимание молекулярных механизмов патогенеза наследственных болезней и высокие медицинские технологии обеспечили успешное лечение многих форм патологии

Сложилась стройная система профилактики наследственных болезней: медико-генетическое консультирование, преконцепционная профилактика, пренатальная диагностика, массовая диагностика у новорождённых наследственных болезней обмена, поддающихся диетической и лекарственной коррекции, диспансеризация больных и членов их семей. Внедрение этой системы обеспечивает снижение частоты рождения детей с врождёнными пороками развития и наследственными болезнями на 60-70%. Врачи и организаторы здравоохранения могут активно участвовать в реализации достижений медицинской генетики.

Учебник соответствует базовому уровню Федерального компонента государственного стандарта общего образования по биологии и рекомендован Министерством образования и науки РФ.

Учебник адресован учащимся 10-11 классов и завершает линию Н. И. Сонина. Однако особенности изложения материала позволяют использовать его на завершающем этапе изучения биологии после учебников всех существующих линий.

В настоящее время из всего растительного многообразия человек возделывает в качестве культурных растений около 150 видов, а из многих десятков тысяч видов позвоночных животных человек одомашнил лишь около 20.

Центры происхождения культурных растений. Большой вклад в изучение происхождения культурных растений внес выдающийся российский генетик и селекционер Николай Иванович Вавилов. Совершив в начале XX в. более 60 экспедиций по всему миру, Вавилов с коллегами обнаружил, что в определенных районах земного шара сконцентрировано наибольшее разнообразие сортов того или иного культурного растения. Например, для картофеля максимум генетического разнообразия связан с Южной Америкой, больше всего сортов риса было обнаружено в Китае и Японии, а кукурузы – в Мексике. Проанализировав результаты поездок, Вавилов пришел к выводу, что районы максимального разнообразия являются центрами происхождения данной культуры и, как правило, связаны с древними очагами земледельческих цивилизаций. Вавилов выделил семь основных таких центров (рис. 88).

В ходе экспедиций была собрана уникальная коллекция семян растений, которая в дальнейшем постоянно пополнялась и изучалась сотрудниками Всесоюзного института растениеводства в Санкт-Петербурге, который сейчас носит имя Н. И. Вавилова. В настоящее время она насчитывает более 300 тыс. видов, сортов и форм. Начиная работу по созданию нового сорта растений, селекционер может подобрать из имеющегося богатейшего исходного материала те образцы, которые максимально полно обладают интересующими его признаками.

Сорт и порода. В современных условиях развития общества важное значение имеет интенсификация сельскохозяйственного производства, т. е. получение максимального количества продукции при минимальных затратах. С этой целью создаются высокопродуктивные породы животных и сорта растений, устойчивые к экстремальным условиям среды, к болезням и вредителям, обладающие определенными необходимыми качествами (рис. 89). Порода, сорт или штамм – это совокупность особей одного вида, искусственно созданная человеком и характеризующаяся определенными наследственными свойствами. Все организмы, составляющие такую совокупность, обладают сходными, наследственно закрепленными морфологическими и физиологическими свойствами и способны максимально проявлять свои качества в тех условиях, для которых они были созданы. Такса может быть прекрасной норной охотничьей собакой, но в качестве гончей ее использовать нецелесообразно. Точно так же борзая, легко настигающая зайца, будет плохим охранником по сравнению с немецкой овчаркой.

Создавая определенные породы животных, мы часто обрекаем их на необходимость постоянного сосуществования с человеком. Корова, дающая 10 тыс. литров молока в год, погибнет в течение несколько дней, если ее не будут доить.


Рис. 88. Центры происхождения культурных видов растений (по Н. И. Вавилову)


Рис. 89. Породы крупного рогатого скота

Основные методы селекции. Основными методами селекции являются отбор и гибридизация.

Отбор. Отбор бывает массовым и индивидуальным. Массовый отбор проводится по внешним, фенотипическим признакам и, как правило, используется в растениеводстве при работе с перекрестноопыляющимися растениями (рожь, кукуруза, подсолнечник и др.). Из огромного количества растений отбирается группа лучших по определенным свойствам растений. Их семена на следующий год высевают и из полученного потомства вновь отбирают лучшие растения, семенами которых засевают новое поле. Если продуктивность и другие признаки популяции улучшились, можно считать, что массовый отбор по фенотипу был эффективен. Таким способом выведены многие сорта культурных растений.

В отличие от массового при индивидуальном отборе выбирают отдельных особей и потомство каждой их них изучают в ряду поколений. Это позволяет достаточно точно оценить генотип каждого родительского организма и выбрать для дальнейшей работы те особи, которые оказываются наиболее оптимальными по сочетанию полезных для человека признаков и свойств. Сорта и породы, получаемые в результате индивидуального отбора, отличаются высокой однородностью и постоянством признаков (рис. 90).

Гибридизация. Наряду с отбором важным методом селекции является гибридизация (скрещивание). Различают внутривидовую и межвидовую (отдаленную) гибридизации.

В основе внутривидовой гибридизации лежит направленное скрещивание особей, обладающих определенными свойствами, с целью получения потомства с максимальным проявлением этих качеств. Например, один сорт растений обладает высокой продуктивностью, но легко заражается грибковыми болезнями, а другой, обладая высокой устойчивостью к заболеваниям, производит гораздо меньше семян. Скрещивая эти два сорта, в потомстве можно получить различные сочетания признаков, среди которых будут высокопродуктивные и одновременно устойчивые к заражению растения.

Отдаленная гибридизация заключается в скрещивании разных видов. В растениеводстве с помощью отдаленной гибридизации создана новая зерновая культура – тритикале, гибрид ржи с пшеницей.


Рис. 90. Культурные разновидности капусты и их дикий предок

Классическим примером получения межвидовых гибридов в животноводстве является мул, полученный при скрещивании осла с кобылицей, который значительно превосходит родителей по выносливости и работоспособности. В Казахстане методом межвидовой гибридизации диких горных баранов-архаров с тонкорунными овцами была создана знаменитая архаромериносная порода овец.

Однако применение межвидовых скрещиваний имеет определенные сложности, потому что получаемые гибриды часто оказываются бесплодными (стерильными) или низкоплодовитыми. Сейчас существуют разные способы решения этой проблемы. В селекции растений способ получения плодовитых отдаленных гибридов методом полиплоидии впервые разработал известный российский ученый Георгий Дмитриевич Карпеченко (1899–1942).

При скрещивании разных пород животных или сортов растений, а также при межвидовых скрещиваниях в первом поколении у гибридов повышается жизнеспособность и наблюдается мощное развитие. Явление превосходства гибридов по своим свойствам родительских форм получило название гетерозиса, или гибридной силы (рис. 91).

Нередко в растениеводстве получают и полиплоидные растения, отличающиеся более крупными размерами, высокой урожайностью и более активным синтезом органических веществ. Широко распространены полиплоидные сорта клевера, сахарной свеклы, ржи, гречихи.

В настоящее время человечество использует для сельскохозяйственного производства около 10 % всей поверхности суши. Увеличивать эту долю уже невозможно, потому что практически все резервы исчерпаны. Тем большее значение приобретает селекционная работа ученых, которые, опираясь на основные закономерности наследственности и изменчивости, создают новые высокопродуктивные породы и сорта. В последние годы селекция активно вводит в практику приемы и методы генной и клеточной инженерии.

«Методы селекции животных и растений» - Биотехнология. Патогенные микроорганизмы вызывают болезни растений, животных и человека. Презентация по биологии на тему: Методы селекции растений и животных. Селекция микроорганизмов. МОУ Баженовская средняя общеобразовательная школа. Методы селекции: отбор, гибридизация, мутагенез. БИОТЕХНОЛОГИЯ, использование живых организмов и биологических процессов в промышленном производстве.

«Селекция растений и животных» - Был получен гибрид Рафанобрассика. Часто приводит к снижению общей жизнестойкости из-за накопления вредных рецессивных аллелей. Экологическая пластичность сортов и пород. Родина шпината, грецкого ореха, миндаля, пшеницы, ржи, граната, хурмы. Северный бужбон. Типы полиплоидии. Технология рекомбинантных ДНК (молекулярное клонирование).

««Методы селекции» 9 класс» - Основные методы селекции растений. Межвидовое скрещивание. Инбридинг. Селекция. Основные методы селекции животных. Методы селекций у растений и животных. Отдаленная гибридизация. Центры происхождения культурных растений. Использование соматических мутаций. Искусственное осеменение. Межпородное скрещивание.

«Развитие селекции» - Предмет и задачи селекции. Закон гомологических рядов. Штамм. Средиземноморский центр. Основы селекции. Центральноамериканский центр. Селекция. Широкое одомашнивание. Основные методы селекции. Достижения селекции животных. Центры происхождения растений. Южноазиатский центр. Достижения селекции растений.

«Селекция урок» - 1. Отбор а) массовый отбор- отбирается группа лучших по свойствам растений. 1887-1943. Н.С.Бутарин. Николай Иванович Вавилов. П.П.Лукьяненко –создал ряд сортов озимой пшеницы. Методы селекции растений и животных. Урок биологии в 9 классе. Сорт яровой пшеницы Новосибирская-67. Гибридизация. Порода, сорт -.

«Коневодство» - Лошади верховых пород. Коник. Основные направления коневодства. Первые конные заводы. Классификация лошадиных пород. Лошади рысистых пород. Выведение новых пород. Результаты работы. Пони. Значение. Обстоятельство. Рабочепользовательское коневодство. Историческая справка. Породы тяжелого типа. Словарик.